- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Porfiri, Maurizio (3)
-
Richmond, Samuel (3)
-
Barak-Ventura, Roni (1)
-
Hasanyan, Jalil (1)
-
Huang, Jiayi (1)
-
Nadini, Matthieu (1)
-
Nakayama, Shinnosuke (1)
-
Nov, Oded (1)
-
Rizzo, Alessandro (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Barak-Ventura, Roni; Richmond, Samuel; Hasanyan, Jalil; Porfiri, Maurizio (, Journal of Physics: Complexity)Abstract Optimizing group performance is one of the principal objectives that underlie human collaboration and prompts humans to share resources with each other. Connectivity between individuals determines how resources can be accessed and shared by the group members, yet, empirical knowledge on the relationship between the topology of the interconnecting network and group performance is scarce. To improve our understanding of this relationship, we created a game in virtual reality where small teams collaborated toward a shared goal. We conducted a series of experiments on 30 groups of three players, who played three rounds of the game, with different network topologies in each round. We hypothesized that higher network connectivity would enhance group performance due to two main factors: individuals’ ability to share resources and their arousal. We found that group performance was positively associated with the overall network connectivity, although registering a plateau effect that might be associated with topological features at the node level. Deeper analysis of the group dynamics revealed that group performance was modulated by the connectivity of high and low performers in the group. Our findings provide insight into the intricacies of group structures, toward the design of effective human teams.more » « less
-
Nadini, Matthieu; Richmond, Samuel; Huang, Jiayi; Rizzo, Alessandro; Porfiri, Maurizio (, IEEE Access)
An official website of the United States government
